邻接矩阵
在本教程中,您将学习什么是邻接矩阵。 此外,您还将在 C,C++ ,Java 和 Python 中找到邻接矩阵的工作示例。
邻接矩阵是将图形G = {V, E}表示为布尔矩阵的一种方式。
邻接矩阵表示
矩阵的大小为VxV,其中V是图形中的顶点数,而条目Aij的值取决于顶点i至顶点j的边为 1 或 0。
邻接矩阵示例
下图显示了一个图形及其等效的邻接矩阵。

图的邻接矩阵
在无向图的情况下,由于每个边(i,j),矩阵关于对角线对称,也有边(j,i)。
邻接矩阵的优点
基本操作(如添加边线,移除边线和检查从顶点i到顶点j的边线)是非常节省时间的恒定时间操作。
如果图是密集的并且边的数量很大,则邻接矩阵应该是首选。 即使图和邻接矩阵是稀疏的,我们也可以使用稀疏矩阵的数据结构来表示它。
但是,最大的优势来自矩阵的使用。 硬件的最新进展使我们能够在 GPU 上执行甚至昂贵的矩阵运算。
通过对相邻矩阵执行运算,我们可以深入了解图形的性质及其顶点之间的关系。
邻接矩阵的缺点
邻接矩阵的VxV空间要求使其成为存储猪。 野外绘制的图形通常没有太多的联系,这就是邻接表是大多数任务的更好选择的主要原因。
虽然基本操作很容易,但是当使用邻接矩阵表示法时,inEdges和outEdges之类的操作很昂贵。
Python,Java 和 C/C++ 示例
如果您知道如何创建二维数组,那么您还将知道如何创建邻接矩阵。
# Adjacency Matrix representation in Python class Graph(object): # Initialize the matrix def __init__(self, size): self.adjMatrix = [] for i in range(size): self.adjMatrix.append([0 for i in range(size)]) self.size = size # Add edges def add_edge(self, v1, v2): if v1 == v2: print("Same vertex %d and %d" % (v1, v2)) self.adjMatrix[v1][v2] = 1 self.adjMatrix[v2][v1] = 1 # Remove edges def remove_edge(self, v1, v2): if self.adjMatrix[v1][v2] == 0: print("No edge between %d and %d" % (v1, v2)) return self.adjMatrix[v1][v2] = 0 self.adjMatrix[v2][v1] = 0 def __len__(self): return self.size # Print the matrix def print_matrix(self): for row in self.adjMatrix: for val in row: print('{:4}'.format(val)), print def main(): g = Graph(5) g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.print_matrix() if __name__ == '__main__': main()
// Adjacency Matrix representation in Java
public class Graph {
private boolean adjMatrix[][];
private int numVertices;
// Initialize the matrix
public Graph(int numVertices) {
this.numVertices = numVertices;
adjMatrix = new boolean[numVertices][numVertices];
}
// Add edges
public void addEdge(int i, int j) {
adjMatrix[i][j] = true;
adjMatrix[j][i] = true;
}
// Remove edges
public void removeEdge(int i, int j) {
adjMatrix[i][j] = false;
adjMatrix[j][i] = false;
}
// Print the matrix
public String toString() {
StringBuilder s = new StringBuilder();
for (int i = 0; i < numVertices; i++) {
s.append(i + ": ");
for (boolean j : adjMatrix[i]) {
s.append((j ? 1 : 0) + " ");
}
s.append("\n");
}
return s.toString();
}
public static void main(String args[]) {
Graph g = new Graph(4);
g.addEdge(0, 1);
g.addEdge(0, 2);
g.addEdge(1, 2);
g.addEdge(2, 0);
g.addEdge(2, 3);
System.out.print(g.toString());
}
}
// Adjacency Matrix representation in C
#include <stdio.h>
#define V 4
// Initialize the matrix to zero
void init(int arr[][V]) {
int i, j;
for (i = 0; i < V; i++)
for (j = 0; j < V; j++)
arr[i][j] = 0;
}
// Add edges
void addEdge(int arr[][V], int i, int j) {
arr[i][j] = 1;
arr[j][i] = 1;
}
// Print the matrix
void printAdjMatrix(int arr[][V]) {
int i, j;
for (i = 0; i < V; i++) {
printf("%d: ", i);
for (j = 0; j < V; j++) {
printf("%d ", arr[i][j]);
}
printf("\n");
}
}
int main() {
int adjMatrix[V][V];
init(adjMatrix);
addEdge(adjMatrix, 0, 1);
addEdge(adjMatrix, 0, 2);
addEdge(adjMatrix, 1, 2);
addEdge(adjMatrix, 2, 0);
addEdge(adjMatrix, 2, 3);
printAdjMatrix(adjMatrix);
return 0;
}
// Adjacency Matrix representation in C++
#include <iostream>
using namespace std;
class Graph {
private:
bool** adjMatrix;
int numVertices;
public:
// Initialize the matrix to zero
Graph(int numVertices) {
this->numVertices = numVertices;
adjMatrix = new bool*[numVertices];
for (int i = 0; i < numVertices; i++) {
adjMatrix[i] = new bool[numVertices];
for (int j = 0; j < numVertices; j++)
adjMatrix[i][j] = false;
}
}
// Add edges
void addEdge(int i, int j) {
adjMatrix[i][j] = true;
adjMatrix[j][i] = true;
}
// Remove edges
void removeEdge(int i, int j) {
adjMatrix[i][j] = false;
adjMatrix[j][i] = false;
}
// Print the martix
void toString() {
for (int i = 0; i < numVertices; i++) {
cout << i << " : ";
for (int j = 0; j < numVertices; j++)
cout << adjMatrix[i][j] << " ";
cout << "\n";
}
}
~Graph() {
for (int i = 0; i < numVertices; i++)
delete[] adjMatrix[i];
delete[] adjMatrix;
}
};
int main() {
Graph g(4);
g.addEdge(0, 1);
g.addEdge(0, 2);
g.addEdge(1, 2);
g.addEdge(2, 0);
g.addEdge(2, 3);
g.toString();
}
邻接矩阵应用
- 在网络中创建路由表
- 导航任务